重磅!深鉴科技卖身赛灵思,打响AI领域收购整合第一枪( 五 )

重磅!深鉴科技卖身赛灵思,打响AI领域收购整合第一枪



FPGA解决芯片业的难点,加速量产

而在深度学习中,深鉴为何选择FPGA架构呢?

众所周知,研制一个处理器级别的芯片,核心架构至少也要3-4年,而要量产的话,还要再经过一年半到两年,这对创业公司来说,是一场漫长的消耗战。并且,芯片的一次性研发投入很高。一个 28 纳米的芯片,纯技术性的研发投入可能就高达400 多万美金。

尽管人工智能这个赛道十分吸金,但初创企业依然承受不起这个成本。并且研制芯片,还需要面临全行业都遇到的挑战:如何去定义芯片?如较为成熟的芯片 X86 的 CPU,蓝牙芯片、wifi 芯片的芯片功能和协议已经固定了下来,只需要再做芯片优化就可以了。但要重新打造芯片,就要重新进行定义。